Smart Grid Development in Indonesia

Dr. Zainal Arifin Executive Vice President Engineering and Technology

Japan **RE Invest Indonesia** June 22, 2021

www.pln.co.id

PLN

Energy Challenge in Indonesia

- Losses Transmission and Distribution is still higher than an average of ASEAN and Global
- LCOE is also relatively high

Decentralization (D2)

Quality of product is still

lower than ASEAN's

Affordable

Energy Transition driven by 3D:

- By 2050, electricity become the central energy carrier.
- Gross electricity consumption would more than double, 85% will come from renewable power
- The grid should be "**more flexible**" to integrate with much RE and all energy resources

Decarbonization (D3)

Sustainable

- Power utility contribute to 33% CO₂ in nation
- Electricity production is still dominated by fossil fuel: 88.67%: Coal 66.55%, Gas 21,99% and Fuel oil 4.23%. Renewable energy mix is 11.23%

Reliable

Digitalization (D1)

PLN Smart Grid

Main Benefits

Grid

Source: IEA (2018); PLN (2020)

Smart Grid - PLN Transformation

SUSTAINABILITY

NATIONAL DEVELOPMENT - AMI (D2)

Roadmap Smart Grid

 $2026 \rightarrow$ 2021-2025 **Resiliency**, customer **Reliability, efficiency, customer** Purposes engagement, sustainability experience and grid productivity and self healing Upgrading SCADA to Wide Area **Power plant Digitalization** for Main Monitoring, Protection and improving efficiency Initiatives Controlling System (WAMPAC) Sub-Station Automation and for improving the system resiliency **Digitalization** selectively for Interconnecting Distributed improving power quality **Energy Resources** to the grid Distribution Grid Management for Integrating Energy Storage for improving reliability and faster VRE penetration and system respond stability EV Charging Station and e-Implementing Dynamic Line *mobility* for EV ecosystem **Rating** for improving the system development resiliency and self healing Smart Micro Grid for increasing RE capability penetration and decreasing LCOE at Demand response for customer some isolated areas engagement to increase the **AMI implementation** by clustering system efficiency approach www.pln.co.id 5

Source: PLN (2020)

Initiative 1: Power plant Digitalization

Program	Sub-Program	2021	2022	2023	2024	2025
Roll out Advanced Analytics	Plant Heat Balance Monitoring dashboard	16	16	10	10	10
	Performance Index & Forecast dashboard	16	16	13	13	13
	Combustion Optimization Monitoring dashboard	9	9	7	7	7
	Plant Heat Balance & Combustion Optimization	10	10	7	7	7
Digital Control Room	-	18	17	1	1	1
Digitized O&M Procedure	-	18	17	7	7	7
Productivity through IoT/Automation	-	13	12	7	7	7
Predictive / Proactive Maintenance	-	13	10	7	7	7

Initiative 4: EVCS and e-Mobility

Planning of EVCS Development (PLN : Partnership = 40 % : 60 %)

PLN Mandiri	67	156	277	412	623	986	1309	1658	1958	2433	2858
PLN Partnership	101	234	416	618	935	1479	1964	2487	2936	3649	4288

Assumption :

- The estimated of EVCS investment based on some EVCS has been built by PLN.
- 2. Ratio for each type of EV Charging based on the following table:

Tipe	Ratio			
Fast Charging	20%			
Medium Charging	50%			
Slow Charging	30%			

 The total estimated investment for EVCS development until 2031 is about ~ IDR 4,35 T (US\$ 281 M)

Initiative 5: Smart Micro Grid

Replacing Diesel to Renewable Energy (PV + Battery) - MW

2021

225

2022

500

2023

1.300

Conclusion

1

2

The development of a smart grid in Indonesia is to answer the challenges of electricity supply (*efficiency / losses, reliability, resiliencyy* and *sustainability*) as well as to support the energy transition process (*De-carbonization, Digitalization* and *Decentralization*).

In line with the *PLN Transformation* program, some of the transformation initiatives are related to the development of a smart grid in Indonesia, including: *Power plant Digitalization, e-mobility, Digitalization of T&D, Micro grids (Dedieselization), PLN Mobile* and others.

3

At the *short term*, the road map implementation of the smart grid in Indonesia focuses on *reliability, efficiency, customer experience* and *grid productivity* with an estimated CAPEX of IDR 10-25 T (US\$ 645 M – 1,6 B). While the *long term* focuses on *resiliency, customer engagement, sustainability* and *self-healing* with an estimated CAPEX of IDR 30-50 T (US\$ 1,9 – 3,2 B).

THANK YOU